
Constraint Satisfaction Problems

4

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 1

4 Constraint Satisfaction Problems

4.1 Constraint satisfaction problems

4.2 Constraint propagation

4.3 Backtracking search

4.4 Local search

4.5 Structure and decomposition+

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 2

Constraint satisfaction problems

Standard search problem
state is a “black box” — any data structure (atomic representa-

tion)
that supports goal test, evaluation, successor operators

CSP: a simple formal representation language
– a factored representation for each state

– a vector of variables and their (attribute) values

Allows useful general-purpose algorithms with more power
than standard (problem-specific) search algorithms

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 3

CSP

CSP=(X,D,C)
– X = {X1, · · · , Xn}: a set of variables
– D = {D1, · · · , Dn}: a set of domains
– C = {C1, · · · , Cn}: a set of constraints

Each domainDi ∈ D consists of a set of allowable values {v1, · · · , vk}
for variable Xi ∈ X
Each constrain Ci = (scope, rel)

– scope: a tuple of variables that participate in the constraint
– rel: a relation that defines the allowable values for scope
C specifies allowable combinations of values for subsets of X

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 4

CSP

Each state in a CSP is defined by an assignment of values to some
(partial assignment) or all (complete assignment) variables
{Xi = vi, Xj = vj, · · ·}

Consistent assignment: an assignment that does not violate any con-
straints

A solution to a CSP is a consistent and complete assignment

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 5

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Domains Di = {1, 2, 3, 4}
Constraints

Qi 6= Qj (cannot be in same row)
|Qi−Qj| 6= |i−j| (or same diagonal)

1
Q = 1

2
Q = 3

Translate each constraint into a set of allowable values for its variables

E.g., values for (Q1, Q2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 6

Example: Map coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania
Variables: WA, NT , Q, NSW , V , SA, T
Domains: Di = {red, green, blue}
Constraints: adjacent regions must have different colors

e.g., WA 6= NT (if the language allows this), or
(WA,NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 7

Example: Map coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA= red,NT = green,Q= red,NSW = green, V = red, SA= blue,

T = green}

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 8

Constraint graph

Constraint graph: nodes are variables, arcs show constraints
Constraint hypergraph: adding hypermodes for n-ary constraint

Victoria

WA

NT

SA

Q

NSW

V

T

CSP algorithms use the graph structure to speed up search
E.g., Tasmania is an independent subgraph

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 9

Varieties of CSPs

Discrete variables
finite domains; size d ⇒ O(dn) complete assignments
• e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

infinite domains (integers, strings, etc.)
e.g., disjunctive constraint Red(x) ∨ Blue(x)

• e.g., job scheduling, variables are start/end days for each job
• need a constraint language, e.g., StartJob1+5 ≤ StartJob3
• linear constraints solvable, nonlinear undecidable

Continuous variables
• e.g., start/end times for Hubble Telescope observations
• linear constraints solvable in poly time by LP (linear program-

ming) methods

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 10

Varieties of constraints

Unary constraints involve a single variable
e.g., SA 6= green

Binary constraints involve pairs of variables
e.g., SA 6= WA

Higher-order constraints involve 3 or more variables
e.g., cryptarithmetic column constraints
Dual graph: an n-ary CSP can be converted to a binary one
— one variable for each constraint in the original graph, and

one binary constraint for each pair of constraints in the original graph
that share variables

Preferences (precedence constraints, soft constraints), e.g., red is
better than green
often representable by a cost for each variable assignment
→ constrained optimization problems

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 11

Example: Cryptarithmetic

(a)

OWTF U R

(b)

+

F

T

T

O

W

W

U

O

O

R

C3 C1C2

(a) a substitution of digits for letters s.t. the resulting sum is arith-
metically correct
(b) constraint hypergraph with the squares for hypernodes
Variables: F T U W R O C1 C2 C3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints

alldiff(F, T, U,W,R,O) (square at the top, global constraint)
O +O = R+ 10 ·C10 (Ci for carrying digits, square at the most

right), etc.

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 12

Inference in CSPs

CSPs
• Search - choose new variable assignment for several possibilities
• Inference — using the constraints to reduce the number of

legal values for a variable, which in turn can reduce the legal values
for another variable, and so on — called constraint propagation

Constraint propagation
• may have variables with multiple possible values — have to

search for a solution
• may be intertwined with search
• may be done as a preprocessing step before search starts
(Sometimes the preprocessing can solve the whole problem)

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 13

CSPs as search problems

CSP as search: states are defined by the values assigned so far
Initial: the empty assignment {}, in which all variables are

unassigned
Action: a value can be assigned to any unassigned variable,

provided that it does not conflict with previously assigned variables
Is-Goal: the current assignment is complete
Path-Cost: a constant cost (say, 1) for every step

Start with the straightforward, dumb approach, then fix it

1) This is the same for all CSPs
2) Every solution appears at depth d with n variables

⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b= (n− ℓ)d at depth ℓ, hence n!dn leaves

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 14

Constraint propagation

Constraint propagation (Inference): using the constrains to re-
duce the number of legal values for a neighbor variable

repeatedly enforcing constraints locally ⇒ local consistency

Forward checking propagates information from assigned to unassigned
variables, but doesn’t provide early detection for all failures

WA NT Q NSW V SA T

NT and SA cannot both be blue

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 15

Arc consistency

Basic form of propagation makes each arc consistent
— node consistency as special situation

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 16

Arc consistency

Basic form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 17

Arc consistency

Basic form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 18

Arc consistency

Basic form of propagation makes each arc consistent (AC)

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 19

Arc consistency algorithm

def AC3(csp)

queue← a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi , Xj)←Pop(queue)

if Revise(csp,Xi , Xj) then // making the domain smaller

if size of Di = 0 then return false // an inconsistency is found

for each Xk in Xi .Neighbors−{Xi} do

add (Xk , Xi) to queue

return true

def Revise(csp,Xi, Xj)

revised← false

for each x in Di do

if no value y in Dj allows (x,y) to satisfy the constraint Xi ↔ Xj

then delete x from Di

revised← true

return revised // true iff revising the domain of Xi

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 20

Arc consistency algorithm

The complexity of AC3 is O(cd3)
– Assume n variables, each with domain size at most d, and with

c binary arcs
– Each arc (Xk, Xi) can be inserted in the queue only d times
(because Xi has at most d values to delete)
– Checking consistency of an arc can be done in O(d2), and hence

O(cd3) at total worst time

But detecting all is NP-hard (combination without arc consistency)

A variable Xi is generalized arc consistent w.r.t. an n-ary constraint
if for every value v in the domain of Xi there exists a tuple of

values that is a member of the constraint, has all its values taken from
the domains of the corresponding variables, and has itsXi component
equal to v

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 21

Path consistency

Arc consistency fails to make enough inferences
– e.g., the map-coloring problem with only two colors (say, red

and blue)
AC3 does nothing for every variable is already arc consistent
there is no solution

Path consistency (PC): a two-variable set {Xi, Xj} is path-consistent
w.r.t. a third variable Xm if

for every assignment {Xi = a,Xj = b} consistent with the con-
straints on {Xi, Xj},

there is an assignment to Xm that satisfies the constraints on
{Xi, Xm} and {Xm, Xj}

The PC algorithm achieves path consistency in much the same way
that AC3 does

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 22

K-consistency

K-consistency: for any set of k − 1 variables and for any consistent
assignment to those variable,

a consistent value can always be assigned to any kth variable

Special cases:
– 1-consistency: given the empty set, one variable consistent,

called node consistency
– 2-consistency: arc consistency
– 3-consistency: path consistency (for binary constraint networks)

A CSP is strongly k-consistent if it is k-consistent and is also (k−1)-
consistent, (k − 2)-consistent, · · · all the way down to 1-consistent

E.g., assume that a CSP with n nodes and make it strongly n-
consistent
How to solve the problem??

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 23

Constraint inconsistency

Global constraint: involving an arbitrary number of variables (but not
necessarily all variables)

Inconsistency checking: if m variables are involved in the con-
straint, and if they have n possible distinct values altogether, and
m > n, then the constraint is inconsistent

Resource constraint: atmost constraint are assigned in total
Inconsistency checking: detecting the sum of the minimum values

of the current domains

Bounds constraint: domains are represented by upper and lower bounds
and are managed by bounds propagation

Bounds consistent: if for every variableX , and for both the lower-
bound and upper-bound values of X , there exists some value of Y
that satisfies the constraint between X and Y for every variable Y

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 24

Backtracking search

Variable assignments are commutative, i.e.,
[WA= red then NT = green] same as [NT = green then

WA= red]

Only need to consider assignments to a single variable at each node
⇒ b= d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 25

Backtracking example

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 26

Backtracking example

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 27

Backtracking example

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 28

Backtracking example

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 29

Backtracking search

def Backtracking-Search(csp)

return Backtracking(csp,{ })

def Backtracking(csp,assignment)

if assignment is complete then return assignment

var←Select-Unassigned-Variable(csp,assignment)

for each value in Order-Domain-Values(csp, var,assignment) do

if value is consistent with assignment then

add {var = value} to assignment

inferences← Inference(csp, var,assignment)

if inferences 6= failure then

add inferences to assignment

result←Backtracking(csp,assignment)

if result 6= failure then return result

remove {var = value} from assignment

return failure

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 30

Improving backtracking efficiency

General-purpose methods can give huge gains in speed

1. Which variable should be assigned next (Select-Unassigned-Variable)?
(heuristic: minimum remaining values)

2. In what order should its values be tried (Order-Domain-Values)?
(heuristic: least constraining value)

3. Can we detect inevitable failure early? What inferences should be
performed at each step (Inference)?

(i.e., constraint propagation, e.g., forward checking)

4. Can we take advantage of problem structure?
(graph theory)

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 31

Minimum remaining values

var←Select-Unassigned-Variable(csp,assignment)

MRV (minimum remaining values, or most constrained variable)
Choose the variable with the fewest legal values
– “fail-first” (for pruning) heuristic, better than random ordering

Doesn’t help in choosing the first variable (region to color)

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 32

Degree heuristic

var←Select-Unassigned-Variable(csp,assignment)

DH (degree heuristic)
Choose the variable with the most constraints on remaining vari-

ables
e.g., SA (blue) with highest degree 5
– choose the first variable to assign

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 33

Least constraining value

Order-Domain-Values(csp, var,assignment)

LCV (least constraining value)
Given a variable, choose the least constraining value
(the one that rules out the fewest values in the remaining vari-

ables)
– “fail-last” (for one solution) heuristic, irrelevant to all solutions

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 34

Forward checking

inferences← Inference(csp, var,assignment)

FC (forward checking)
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 35

Forward checking

FC: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 36

Forward checking

FC: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 37

Forward checking

FC: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Forward checking inference has detected that the partial assignment
is inconsistent with the constraints ⇒ Backtracking

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 38

Forward and backward

inferences← Inference(csp, var,assignment)

FC doesn’t detect all of the inconsistency, because it doesn’t look
ahead far enough

MAC (maintaining arc consistency): after a variable is assigned a
value, the Inference procedure calls AC3 ⇒ more powerful than
FC

Backtracking is chronological because the most recent decision
point is backed up ⇒ looking backward
⇐ Backjumping (modified Backtracking)
— backtracks to the most recent conflict assignment

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 39

Local search for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic
choose the value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 40

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 41

Min-conflicts algorithm

def Min-Conflicts(csp,max-steps)

max-steps, the number of steps allowed before giving up

current← an initial complete assignment for csp

for i = 1 to max-steps do

if current is a solution for csp then return current

var← a randomly chosen, conflicted variable from csp.Variables

value← the value v for var that minimizes Conflicts(csp, var, v, current)

set var=value in current

end

return failure

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 42

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R =
number of constraints

number of variables

R

CPU
time

critical
 ratio

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 43

Structure and decomposition+

The structure of a problem, represented as a constraint graph, can
be used to find solutions quickly, and the only way to deal with real
world problem is to decompose it into many subproblems

Suppose each subproblem has c variables out of n total
What is the worst-case solution cost?

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 44

Problem Structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 45

Problem structure

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · dc, linear in n

E.g., n=80, d=2, c=20
280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 46

Tree-structured CSPs

A

B

C

D

E

F

Theorem: if the constraint graph has no loops, the CSP can be solved
in O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning
(notice that the relation between syntactic restrictions and the com-
plexity of reasoning)

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 47

Algorithm for tree-structured CSPs

Procedure of tree CSPs

1. Choose a variable as root, order variables from root to leaves s.t.

every node’s parent precedes it in the ordering

// see the following figure

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

A

B

C

D

E

F

A B C D E F

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 48

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT

Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size c ⇒ runtime O(dc · (n− c)d2), very fast for small c

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 49

Real-world CSPs∗

• Timetabling problems
e.g., which class is offered when and where?

• Hardware configuration

• Spreadsheets

• Transportation scheduling

• Factory scheduling, etc.

Many real-world problems involve real-valued variables

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 50

Constraint programming∗

Constraint programming: modeling and solving problems by CSPs
– describing the problems by constraint programming language,

such as ESSENCE/ZINC, in high-level modeling
– mapping the description into a set of constraints in low-level

CSP format, which is then solved

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 4 51

